
Saurabh Malgaonkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.234-238

www.ijera.com 234 | P a g e

Remote Nodes Management Using RMI

Saurabh Malgaonkar*, Swarnalata Bollavarapu*, Tejas Hirave**
*(Computer Engineering Department, Mukesh Patel School of Technology Management & Engineering,

NMIMS University, Mumbai, India)

** (Computer Engineering Department, Shah and Anchor Kutchhi Engineering College, Mumbai University,

Mumbai, India)

ABSTRACT
We have focused upon the design and development of a remote desktop management system using Remote

Method Invocation, since it has many advantages in terms of remote computation, software optimization, data

access and storage services that do not require end-user knowledge of the physical location and configuration of

the system. In this type of a system we have two types of users - clients and the server. The server can control all

the activities of the clients and also impose certain restrictions on the clients. The clients can use the data or

shared resources, software and information that are provided by the server to computers and other devices as a

utility over a network. The major elements of desktop management are assets management, software

deployment, patch management, remote desktop sharing, active directory reports and user logon reports. Remote

desktop sharing enables users to access and use their own desktop from other machines or locations. This

system is focused upon the real time events.

Keywords- cloud hosting services, distributed computing, remote control, remote monitoring, networking, real-

time applications

I. INTRODUCTION
Computer networks is a collection of

computers and other devices that can send and

receive data from one another communication

system, since networking deals with data, hence it

becomes necessary to focus on the security.

Managing the other remote computers is equally

important in the congested network environment [1].

Management consists of monitoring, by monitoring

the other computers on the network we know what

others are doing on their system.

This real time application does not involve

any end user (client) activity. Only user of the

application is administrator sitting at server. This

application can be applied to monitor activities of

employee in a particular department or the work

running on client’s terminal specific lab work

session.

In today’s fast and growing world, every

system is connected to network via internet or by a

combinations of LAN (local area network) or by a

WAN (wide area network) or by a MAN

(metropolitan area network). In an environment

where there is an administrator, a user present,

management and monitoring becomes the important

aspect of the network system. Administrator should

have control over the remote computers.

This system provides many features and

advantages and may have its applications in corporate

firms and many other organizations. The need for

time-effective and cost-effective solutions has been

the basic motive behind the development of this

project.

We have studied about the cloud services and have

analyzed its advantages over the normal networks

and hosting services. For this system we have

preferred cloud based hosting because of the

following advantages: flexibility, availability, fault

tolerance, massive processing power and economic

feasibility.

II. DESIGN
A. Product Function Overview

This real time application mainly deals with

the administrator access from the server. It includes

security and monitoring aspect of the network. It

involves grabbing the screen of multiple client

terminals and showing multiple client screens at

server side. The main search and retrieve operation

involves the discovery [2] [3] of the nodes of a

system along with the grabbing of their information

for their inclusion in the server list.

B. User Characteristics

There will be only one type of user in

application –administrator. He/She is the only person

to keep watch of networked client terminals from the

server side only. He can do function like:

1. Add client.

2. Remove client.

3. Administrator message to the client.

4. Watching screen of single client terminals.

RESEARCH ARTICLE OPEN ACCESS

Saurabh Malgaonkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.234-238

www.ijera.com 235 | P a g e

5. Simultaneously keeping watch of multiple

clients.

6. Time flexibility for screen updates.

7. Performing remote operations.

C. General Characteristics

The client terminal to be watched should

have client program installed over there.

1. Inputs and Outputs:

Input: Administrator does not have to enter

any data. Just by clicking over options he can

perform desired operations.

Output: Single terminal screen or multiple clients’

screens mapped.

2. External Interface Requirements:

A user-friendly GUI has been developed

which provides effective screens that an

administrator can easily use.

D. Performance Constraints

In this application, the client screen changes

are updated at specified interval of time but if

multiple clients are sending their screens

simultaneously, then there can be chances of

increased network traffic. To overcome this problem,

message can be passed from server to client about

sending its screen after specified interval. It may be

possible that on a networked terminal, there is no

work going on & still if clients send its screen at each

interval, traffic will be increased but this is also

properly addressed. The deployment of the server is

on Google cloud hosting service [6] that enables to

handle and perform many operations simultaneously

without any delays perfectly on a real time basis.

Fig 1: Functional Workflow of the system

III. IMPLEMENTATION
A. RMI

The Java Remote Method Invocation

Application Programming Interface (API), or Java

RMI [5], is a Java [4] API that performs the object-

oriented equivalent of remote procedure calls (RPC),

with support for direct transfer of serialized Java

objects and distributed garbage collection.

1. The original implementation depends on Java

Virtual Machine (JVM) class representation

mechanisms and it thus only supports making calls

from one JVM to another. The protocol underlying

this Java-only implementation is known as Java

Remote Method Protocol (JRMP).

2. In order to support code running in a non-JVM

context, a CORBA version was later developed.

B. ROBOT CLASS

This class is used to generate native system

input events for the purposes of test automation, self-

running demos and other applications where control

of the mouse and keyboard is needed. The primary

purpose of Robot is to facilitate automated testing of

Java platform implementation.

C. SAMPLE CODES

1. Server Code for sending message to client

Public void message method ()

{

 String s;

 s = "MESSAGE" + "\n";

System.out.println("hi");

int selected[] = list.getSelectedIndices();

System.out.println("hi " + selected.length);

 String hostnames[] = new

String[selected.length];

System.out.println("hi " + hostnames.length);

for (int i = 0; i <selected.length; i++)

 {

hostnames[i] = (String)

model.getElementAt(selected[i]);

 String ipaddress = hostnames[i];

System.out.println("hi " + ipaddress);

try

{

 Socket s1 = new Socket(ipaddress, 2030);

System.out.println("hi");

DataOutputStream dos = new

DataOutputStream(s1.getOutputStream());

System.out.println("hi");

dos.writeBytes(s);

dos.flush();

System.out.println("hi");

 }

catch (Exception e)

{

System.out.println(e);

 }

 }

System.out.println("hi");

msgsendms= new msgsend(this);

System.out.println("hi");

}

Saurabh Malgaonkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.234-238

www.ijera.com 236 | P a g e

2. Server code tologoff client

public void logoffmethod(){

 String s;

 s = "LOGOFF"+"\n";

 System.out.println("hi");

 int selected[] = list.getSelectedIndices();

 System.out.println("hi "+selected.length);

 String hostnames[]= new

String[selected.length];

 System.out.println("hi "+hostnames.length);

 for(int i = 0 ; i<selected.length ; i++)

 {

 hostnames[i]=(String)model.getElementAt(s

elected[i]);

String ipaddress = hostnames[i];

 System.out.println("hi

"+ipaddress);

 model.removeElement(hostnames[i]);

try {

 Socket s3 = new

Socket(ipaddress,2030);

System.out.println("hi");

 DataOutputStream dos = new

 DataOutputStream(s3.getOutputStream());

 System.out.println("hi");

 dos.writeBytes(s);

 dos.flush();

 System.out.println("hi");

 rmodel.addElement(hostnames[i]);

 }

 catch(Exception

e){System.out.println(e);}

 }

}

3. Server code to restart client

public void restartmethod(){

 String s;

 s = "RESTART"+"\n";

 System.out.println("hi");

 int selected[] = list.getSelectedIndices();

System.out.println("hi "+selected.length);

String hostnames[]= new String[selected.length];

 System.out.println("hi "+hostnames.length);

for(int i = 0 ; i<selected.length ; i++)

{

 hostnames[i]=(String)model.getElementAt(s

elected[i]);

 String ipaddress = hostnames[i];

 System.out.println("hi

"+ipaddress);

 model.removeElement(hostnames[i]);

 try {

 Socket s2 = new

Socket(ipaddress,2030);

 System.out.println("hi");

 DataOutputStream dos = new

DataOutputStream(s2.getOutputStream());

 System.out.println("hi");

dos.writeBytes(s);

 dos.flush();

 System.out.println("hi");

 rmodel.addElement(hostnames[i]);

 }

catch(Exception e){System.out.println(e);}

 }

}

4. Client code for sending its live screen to server

public class ClientFirst

 {

 Socket socket = null;

public static void main(String[] args)

{

newClientFirst().initialize("192.168.1.4", 1122);

}

public void initialize(String ip, int port)

{

 Robot robot = null; //Used to capture the screen

 Rectangle rectangle = null; //Used to represent

screen dimensions

try

{

System.out.println("Connecting to server");

socket = new Socket(ip, port);

System.out.println("Connection Established.");

//Get default screen device

GraphicsEnvironmentgEnv=GraphicsEnvironment.ge

tLocalGraphicsEnvironment();

GraphicsDevicegDev=gEnv.getDefaultScreenDevice

();

//Get screen dimensions

 Dimension dim =

Toolkit.getDefaultToolkit().getScreenSize();

rectangle = new Rectangle(dim);

 //Prepare Robot object

robot = new Robot(gDev);

//ScreenSpyer sends screenshots of the client screen

newScreenSpyer(socket,robot,rectangle);

 //ServerDelegaterecievesserver commands and

execute them

newServerDelegate(socket,robot);

 }

catch (UnknownHostException ex)

 {

ex.printStackTrace();

}

catch (IOException ex)

{

ex.printStackTrace();

Saurabh Malgaonkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.234-238

www.ijera.com 237 | P a g e

}

catch (AWTException ex)

 {

ex.printStackTrace();

 }

 }

}

IV. SCREENS
The server side was successfully deployed

on the cloud from where it was used to monitor and

manage clients of a particular network.

Fig 2: Server side interface

Fig 3: Successful file transfer operation

Successful operations were carried out using

the server interface with very minute or almost no

delays and the remote clients functioned properly.

V. CONCLUSION
This application mainly deals with the

administrator access from the server. It includes

security and monitoring aspect of the network

remotely. It involves grabbing the screen of multiple

client terminals and showing multiple client screens

at server side. This system also provides facility of

file transfer from server computer to client computer.

These files are stored at the address specified by the

client in its corresponding code. The server also has

the ability to remotely control the entire available

clients. The server can perform actions such as client

restart, client logoff & client shutdown.

The both client and server applications are

very lightweight (size <1MB combined), hence very

flexible and easy to use.

VI. Future Work
“Remote cloud based monitoring” has many

features but there may be many facilities that can be

added to enhance the working of our system. System

Design is creative, it is almost impossible to create a

finished system with the first plan. Hence there is

always a scope for improvements.

1) Creation of log file: To retrieve the information

store at client side and have information

regarding all the operations done in the past.

2) Lock: To disable the inputs from mouse and

keyboard of remote client.

 3) Benchmarking: We are currently hosting this at

cloud, but we need to work upon the time based

each operation result for the various type of

hosting platforms (cloud, dedicated, Linux-

based…) available.

ACKNOWLEDGEMENTS
Our sincere thanks to Sakshi “Geeta” Surve,

who is an assistant professor at the Thadomal

Shahani Engineering College, Computer Engineering

department, Mumbai University, Mumbai, India; for

her constant support, guidance and feedback for

implementing this system. Her expert knowledge of

distributed computing and cloud computing has

always been a source of motivation and inspiration to

us.

REFERENCES
[1] Kenneth P. Birman (2005), "Reliable

distributed systems".

[2] Zupeng Li, Daoyin Huang, Jianhua Huang,

“Research of Peer Discovery Method in

Peer-to-Peer Network” ,12th IEEE

Conference on distributed computing and

networking, pp. 37-42, 2008.

[3] L. Alima, A. Ghodsi, and S. Haridi. A

framework for structured peer- to-peer

overlay networks in Global Computing,

223–249, 2011.

[4] "Java ", http://www.java.com/en/, December

18, 2013.

[5] "Remote Method Invocation", http://www.

oracle.com/technetwork/java/javase/tech/ind

ex-jsp-136424.html, January 19, 2013.

[6] "Google Cloud Platform", https://cloud.

google.com/, March 23, 2013.

Saurabh Malgaonkar et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.234-238

www.ijera.com 238 | P a g e

Saurabh Malgaonkar is a post

graduate (Masters in Computer Engineering) pass out

student of the Thadomal Shahani Engineering

College, Computer Engineering Department.

His research interests are networking, distributed

systems and computing, artificial intelligence, data

mining and in particular the intersection of these

fields.

Tejas Hirave is a post graduate (Masters

in Computer Engineering) pass out student of the

Thadomal Shahani Engineering College, Computer

Engineering Department.

His research interests are P2P systems, database

systems, data mining, data structures and networking.

Ms.Swarnalata Bollavarapu has

received M.E. (Computer Engg.) from Thadomal

Shahani Engineering College in 2011. She has more

than 8 years of teaching experience. She is currently

working as Assistant professor in Department of

Computer Engineering at MPSTME, NMIMS

University, Mumbai. Her areas of interest includes

Information Security, Distributed Computing and

Cloud Computing.

.

